I do not agree with the authors of papers arXiv:0806.2184 and arXiv:0901.1023v1 (published in Phys. Lett., respectively, B668 (2008) 453 and B676 (2009) 173). They consider that \textit. There are well known results (for example, presented in monographs by H. Rund and R. Miron and M. Anastasiei) that in Finsler geometry there exist an infinite number of linear connections defined by the same metric structure and that the Chern and Berwald connections \textbf For instance, the Chern's one (being with zero torsion and "weak" compatibility on the base manifold of tangent bundle) is not generally compatible with the metric structure on total space. This results in a number of additional difficulties and sophistication in definition of Finsler spinors and Dirac operators and in additional problems with further generalizations for quantum gravity and noncommutative/string/brane/gauge theories. I conclude that standard physics theories can be generalized naturally by gravitational and matter field equations for the Cartan and/or any other Finsler metric compatible connections. This allows us to construct more realistic models of Finsler spacetimes, anisotropic field interactions and cosmology.
We review the current status of Finsler-Lagrange geometry and generalizations. The goal is to aid non-experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kahler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of ''orthodox'' physicists. Although the bulk of former models of Finsler-Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modelled equivalently on Riemann-Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration. We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/ Kahler, or nonholonomic Riemann spaces. Finally, we consider some classes of exact solutions in string and Einstein gravity modelling Lagrange-Finsler structures with solitonic pp-waves and speculate on their physical meaning.